

Instructor: Dr. Sarah Khankan

Email: skhankan@gmu.edu Office: Exploratory Hall 4219 Office Hours: M 10:15-11:30 and by appointment

Credit Hours: 4

Text(s): Thomas' Calculus: Early Transcendentals with Integrated Review, 14th Edition by Hass, Joel — Heil, Christopher — Weir, Maurice; Textbook ISBN-13: 9780134439020

Prerequisites: Successful completion of MATH 115, or grade of A in MATH 113 and recommendation of MATH 113 instructor. If you do not meet this requirement but believe that you can do well in this course, please see me.

Broad purpose of the course: We will be covering all or parts of chapters 6-10. As the honors version of Calculus 2, we will be covering more aspects of the material in more depth than a typical math 114 class, and we may not always follow the order of the text. Also, I may introduce material not found in the textbook; at such times, I will supply all necessary materials.

Disability statement: If you are a student with a disability and you need academic accommodations, please see me and contact the Office of Disability Resources at 703.993.2474. All academic accommodations must be arranged through that office.

Tutoring Center: The Math Tutoring Center is located in the Johnson Center Room 344. Help is available on a walk-in basis. For hours of operation see http://math.gmu.edu/tutor-center.php University Honor Code: You are expected to follow the GMU Honor Code http://oai.gmu.edu/the-mason-honor-code/.

Exams:

• Exam 1: 02/22/2019

- Exam 2: 03/28/2019
- Final Exam: TBD

Grade Distribution:

Quizzes	25%
Exam 1	25%
Exam 2	25%
Final Exam	25%

Pop Quizzes: 10 minutes. Similar to practice problems.

Course Policies:

- Exams are closed book, closed notes.
- No makeup exams will be given.
- Attendance is expected.
- Students are responsible for all missed work, regardless of the reason for absence. It is also the absentee's responsibility to get all missing notes or materials.

Tentative Course Outline:

The weekly coverage might change as it depends on the progress of the class.

Week	Content
1 (01/22-01/24)	 6.1 Volumes Using Cross-Sections 6.2 Volumes Using Cylindrical Shells
2 (01/29-01/31)	 6.3 Arc Length 6.4 Areas of Surfaces of Revolution 6.5 Work
3 (02/05-02/07)	7.1 The Logarithm Defined as an Integral7.2 Exponential Change and Separable Diff Eq.
4 (02/12-02/14)	 7.3 Hyperbolic Functions 7.4 Relative Rates of Change
5 (02/19-02/22)	 Review EXAM 1
6 (02/26-02/28)	 8.1 Using Basic Integration Formulas 8.2 Integration by Parts
7 (03/05-03/07)	 8.3 Trigonometric Integrals 8.4 Trigonometric Substitution 8.5 Integration of Rational Functions by Partial Fractions
8 (03/12-03/14)	• SPRING BREAK
9 (03/19-03/21)	 8.7 Numerical Integration 8.8 Improper Integrals 8.9 Probability
10 (03/26-03/28)	 Review EXAM 2
11 (04/02-04/04)	 9.1 Solutions, Slope Fields, and Euler's Method 9.2 First-Order Linear Equations 10.1 Sequences
12 (04/09-04/11)	 10.2 Infinite Series 10.3 The Integral Test 10.4 Comparison Tests
13 (04/16-04/18)	 10.4 Comparison Tests 10.5 Absolute Convergence; The Ratio and Root Tests 10.6 Alternating Series and Conditional Convergence
14 (04/23-04/25)	 10.7 Power Series 10.8 Taylor and Maclaurin Series 10.9 Convergence of Taylor Series
15 (04/30-05/02)	• Review